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A mathematical model is presented which describes the evolution of electromagnetic radiation in a
free-electron laser (FEL), without any stringent assumptions regarding the envelope of the radiation
pulse. The derived set of equations is nearly identical to the traditional set, which needed the assump-
tion of a slowly varying radiation amplitude and phase. Although rapid variations in the radiation en-
velope do have influence on the dynamics of the electrons, ignoring this fact does not cause excessive er-
rors. Consequently, it is concluded that the region of validity of the traditional FEL equations is much

larger than has been realized so far.

PACS number(s): 41.60.Cr

In a free-electron laser (FEL), coherent radiation is
produced by a beam of relativistic electrons propagating
through a periodic magnetic structure, called the undula-
tor. The first description of the FEL interaction by
Madey [1] was based upon quantum mechanics, but it
was soon realized that the mechanism is essentially classi-
cal. The foundation for classical FEL theory was laid by
Colson [2,3], who showed that the exchange of energy be-
tween an electron beam and a copropagating radiation
field may be modeled in terms of the motion of the indivi-
dual electrons in a ponderomotive potential, formed by
the undulator field and the radiation. This description,
similar to the usual description of particle dynamics in
linear accelerators, results in a set of first-order
differential equations, known as the “Maxwell-pendulum
equations.” These equations show how individual elec-
trons in the electron beam evolve similarly to pendula in
a gravitational field (represented by the radiation ampli-
tude) while the radiation evolution is driven by the longi-
tudinal distribution of the electrons within a radiation
wavelength. Colson’s approach has since then been fol-
lowed by many other authors (see, e.g., Refs. [4-7], who
contributed to the current status of classical FEL theory.

A characteristic common to all FEL models so far is
the assumption that the optical field varies on a scale
which is large with respect to a radiation wavelength.
This “slowly-varying-envelope approximation” or SVEA
[2-8] may be expressed mathematically as

‘ % <|k,al, (1a)
Y | <lw,a,]
FY < lw,a,| , (1b)

where a, is the (complex) radiation envelope, k, is the ra-
diation wave number, and o, =k,c, with ¢ the speed of
light in vacuo. The SVEA was undoubtedly valid for ear-
ly FEL experiments like that of Elias et al. [9], where the
amplification rate of the radiation, or the gain per undu-
lator period, was small. More recently, progress in ac-
celerator technology (in particular the invention of the
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photocathode linac [10]) has made higher beam currents
possible, hence increasing the gain per undulator period,
which introduces the possibility of higher gradients in the
radiation envelope. Moreover, it has been suggested that
high beam currents and/or low beam energies may cause
phenomena like “strong superradiance” [11] and syn-
chrontron instabilities [12], in which the SVEA may not
be valid anymore. Even in the case of low-gain FEL’s,
however, the SVEA may be violated when the length of
the electron pulses approaches the order of the optical
wavelength, the way it can happen, e.g., in the Free-
Electron Laser for Infrared Experiments (FELIX [13)]),
producing up to ~100 um radiation with a pulse length
in the order of a picosecond.

In this paper it is shown how the classical set of FEL
equations may also be derived without the assumption of
a slowly varying radiation envelope. Consequently, the
Maxwell-pendulum equations have a much larger range
of validity than has been realized, and will accurately de-
scribe the evolution of radiation envelopes that vary
significantly over one radiation wavelength.

The analytical route presented here closely follows pre-
vious work by Colson [2,3], except that all derivatives of
the fields are explicitly taken into account. All units are
in mks. A frame of reference is set up by the orthogonal
unit vectors u,, u,, and u,. The electron beam propa-
gates along the positive z axis, in a magnetostatic helical
undulator field represented by the vector potential

A,,(z)=‘17“2 exp(—ik,z)u+c.c. , (2)

where a, is real, uE(ux+iuy)/\/§, and k, is the
undulator’s wave number. The copropagating radiation
field is described by the vector potential

A,(z,t)=—-‘/—5{ua,(z,t)exp[l(k,z—-a),t)]—c.c.} (3)
corresponding to the electric field

E,(z,t)=—3A, /0t

=1 i(kz— —
—‘/E{ue,(z,t)exp[t(k,z o,t)]—c.c.} . (4a)
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Substitution of Eq. (4a) into Eq. (3) shows that the com-
plex envelopes a, and e, are related by

e,=iw,a,—da,/dt . (4b)

Writing the electric field of the radiation and the mag-
netic field of the undulator in terms of the vector poten-
tials A, and A, (Lorentz gauge), the evolution of the rel-
ativistic momentum ymv of a single electron in the com-
bined undulator and radiation vector potential A, + A,
may be written as (see, e.g., Ref. [14])

A
D (ymv)=—e —Eat—’+vx[v><(Au+A,)] ,
where the “electron-convective derivative” D,=2d/0d¢
+v-u,8/9z. In a one-dimensional approach (no x-y
dependence) the perpendicular velocity of the electron
v, =(v-u,,v-u,,0) follows directly by integration of Eq.
(5) [2-7):

v=—-(A,+A,). ©6)
ym

This perpendicular velocity and the electron density
n(z,t) determine the transverse current density
J=n(z,t)ev, that drives the optical field according to
Mazxwell’s wave equation (see, e.g., Ref. [14]):

23
ar? az?

A= 3 . (7
€

Substitution of Eq. (3) and the transverse current density
into Eq. (7), after a slight manipulation of the terms, re-
sults in

a,

ot

D, |liow,a,—

+(%Drar )ii ]
i

- n(z,t)e?

. +ig e 7.
2yme, [(a,)y+ia,e ™) (8)

(The labels i, ii, and iii will be used to identify the corre-
sponding terms.) In Eq. (8) the “radiation-convective
derivative” has been defined as D,=3/90¢+c 0/9z, and
the electron’s ‘“ponderomotive phase” as (=(k,
+k,)z—w,t. The energy change of a single electron in-
teracting with the FEL’s electric field E, obeys

- JA
e e r
D =y, . =y, .
eV mczvl Er mczvl at
Substitution of the field (3) and the transverse velocity (6)
results in
2
—e‘a da .
De’}’=’2‘iym—2:‘2 [ iw,a,— atr i e“—c.c. ]
82 d 2
2ym?2c? ot la, | G ®)

When space-charge interactions in the electron beam are
ignored, Eq. (9) may be used to describe the collective
behavior of the electrons in the electron beam. Since the
electron’s longitudinal position may be obtained directly

from its energy and the (local) radiation field by
B:=1—y~2—B% or, using Eq. (6),

elA,+ A,
R (10)
the longitudinal electron density n(z,t) and the pondero-
motive phase { may be obtained from Eq. (10). These
two quantities determine the evolution of the radiation by
Eq. (8), which closes the system.

At this point we will analyze the set of second-order
FEL equations (8)—(10). The terms labeled with iii in (8)
and (9) appear from the radiative correction to the per-
pendicular electron velocity, represented by the A, term
in Eq. (6). This radiative correction may be neglected un-
der the assumption | A,| <<| A, |, which is equivalent to
the assumption that the magnetic field of the radiation is
much weaker than the undulator’s magnetic field. The
additional neglect of the terms labeled with i and ii, un-
der the slowly-varying-envelope assumptions (1a) and (1b)
reduces Egs. (8) and (9) to the SVEA equations [2-7]:

. n(z,t)e* . _;
D,(ta),a,)=27—m€()(laue i€y, (11)
—ela, .
Dey=_—22[(ia),a,)e‘§—c.c.] . (12)
2iym©c

Using the definition of the complex electric field envelope
(4b), the radiation vector potential envelope a, may be ex-
plicitly expressed in terms of e, :

® 1 d"e,

a —_—IT .
r "§0 (iw,)"“ ot

Keeping all derivatives of a,, Egs. (8) and (9) may there-
fore also be written as

. ® 1 d",
D, e’+7D’,,§O (i0,)" 1 3"
=—n(z’t)e2(iaue_i§), (13)
2yme,
Dy —ela, i
Y= 2iymic? (e,e’>—c.c.) . (14)

Except for the term containing the series expansion, these
equations have the same form as the SVEA equations (11)
and (12). An interesting detail is the electric field en-
velope, approximated by e, ~iw,a, in the SVEA equa-
tions (11) and (12), which now appears in the exact form
in Egs. (13) and (14). The term with the series expansion
in Eq. (13) may be neglected when

2w, |e,| >>|de, /3t +c de, /3z| .

This is an extremely weak condition, which is only violat-
ed when the electric field at a fixed point in the radiation
pulse exceeds a relative growth of exp(2w,t), i.e., a power
increase of exp(2k,) after 1 m of FEL interaction, which
corresponds to a factor of more than 10!® even in the
case of a long FEL wavelength of 10 cm. Hence, neglect-
ing the series expansion in Eq. (13), the full FEL equa-
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tions (13) and (14) may be written in the same mathemati-
cal form as the SVEA equations (11) and (12).

A difference with regard to the SVEA FEL equations is
that, although typically | A,|<<|A,|, the A, term in
(10) may not be neglected when no SVEA is used. This
can be understood by considering the evolution of the
electron’s longitudinal velocity from Eq. (10). Ignoring
the A, term in Eq. (10), it is found after differentiation
that

1-B2
vB,

Keeping the A, term in Eq. (10) brings up an additional
term:

D.B,= D,y .

2= Pip € piatal. a9
ez sz eV 23272”12(«'2 e r u .
After substitution of the fields (2) and (3) and assuming

“FEL resonance” [2,3], i.e.,

k
B, o (16)
1-8, k,
Eq. (15) may be written as
—2e’a,k, 1 ||, da,
D.B,= yzmzczk, -i; lw.a,— ar |,

k, )
D,a et—c.c.
2k, 7 ]iii} }

(17)

+

(again, terms proportional to a, were neglected with
respect to terms proportional to a,, ). As before, the term
labeled with i in Eq. (17) is the non-SVEA term, and the
term labeled with iii is the radiative correction resulting
from the A, term in Eq. (10). Assuming an arbitrary
(stationary) radiation envelope f(z—ct), it is readily
found that the non-SVEA contribution results in a term

cf'(z—et),

where the prime denotes the operator 8/9d(z —ct). Using
Eq. (16), it is found that the radiative correction contrib-
utes the term (assuming 1 —f, <<1)

k,c
2k,

flz—ct)B,—1)= —%f’(rct) ,

i.e., the radiative correction amounts to one-half of the
term that arises due to the neglect of the SVEA. The
physical interpretation of the radiative correction term in
(15) is the electron slipping along a non-slowly-varying
radiation pulse, which will affect its transverse velocity as
seen from Eq. (6). Since the transverse velocity is coupled
to the longitudinal velocity as seen from Eq. (10), the lon-
gitudinal dynamics will consequently also be affected. Ob-
viously, this effect disappears in the case of a smooth ra-
diation envelope.

In a numerical simulation, inclusion of the effect of the

radiation on the transverse motion of the electrons is
nontrivial and particularly time-consuming. After discre-
tizing e, and @, on a numerical grid, it is possible to ob-
tain a, from e, along all the grid points, by solving
the set of linear difference equations e/"=iw,a"—(a" !
—a~1)/2At (where the superscript denotes the ordinal
number of the grid points and At is the temporal resolu-
tion). However, the number of grid points along the
pulse, and hence the number of equations to be solved, is
usually very large, particularly when several grid points
are taken over an interval of one radiation wavelength.
From the discussion above, however, it follows that when
the term labeled with iii in Eq. (17) is neglected—so that
the equation, written in terms of e,, obtains the same
form as the classical SVEA pendulum equation [2,3]—
roughly 2 of the radiation envelope derivatives will be
taken into account anyway. The induced error is there-
fore not expected to be excessive.

This statement is confirmed by Fig. 1, in which the
evolution of a narrow spike in the radiation pulse is
shown for a single-pass, high-gain FEL amplifier. Typi-
cal parameters are listed in Table I. The curves represent
three different numerical solutions (using a total of 6000
sample electrons): (a) the “classical” SVEA solution, us-
ing Eqgs. (11) and (12) and taking one radiation grid point
per radiation wavelength; (b) the “full” solution, using
Egs. (13) and (14), taking 50 grid points per radiation
wavelength and ignoring the radiative correction term in
(15); and (c) similar to (b), but including the effect of the
radiation gradient on the perpendicular electron motion.
It is seen how the higher discretization of the radiation
field, which is allowed now that the SVEA is dropped, in-
duces a 40% change in the numerical results [curve (a)
compared to (b)]. The error due to the neglect of the ra-
diative correction in Eq. (15) is limited to about 20%
[curves (b) and (c)].
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FIG. 1. Spiking envelope of the radiation pulse for a high-
gain, single-pass FEL amplifier (violating the assumption of a
slowly varying amplitude and phase), obtained from a numerical
solution based on Eqs. (11)-(14). The horizontal axis runs along
the optical pulse, the vertical axis shows the local radiation
power. The curves represent (a) the classical SVEA solution,
using Egs. (11) and (12) and taking 1 radiation sample per radia-
tion wavelength; (b) the full solution, using Eqs. (13) and (14),
taking 50 radiation samples per radiation wavelength and ignor-
ing the radiative correction in Eq. (17); and (c) identical to (b),
but including the radiative correction in Eq. (17). Parameters
are listed in Table 1.
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TABLE 1. Physical parameters for the computer simulation
shown in Fig. 1.

Parameter Value
Electron beam

Energy 5 MeV

Current 100 A

Radius 0.5 mm

Length 16 mm
Undulator

Peak field 02T

Period 5 cm

No. of periods 40
Radiation

Wavelength 0.4 mm

Initial intensity 2 kW

It is concluded that the classical SVEA FEL equations
may be transformed to a set which is also valid when the
radiation envelope changes rapidly on the scale of a radi-
ation wavelength. This transformation simply consists of
the substitution of the SVEA approximation for the elec-
tric field, in this work represented by iw,a,, by the exact
expression e, =iw,a,—0a,/dt. Consequently, both the

form and the interpretation of the equations remains
identical. This fact implies that the classical SVEA equa-
tions have a much larger range of validity than has been
realized so far, and may be used to describe all effects
that would violate the SVEA, like very short radiation

- pulses or spiking radiation envelopes. Apparently, in nu-

merical work, it is also allowed to discretize the radiation
field on a scale smaller than a radiation wavelength
(which is inconsistent with the SVEA), which may have
large effects on the obtained results. A modest discrepan-
cy was found concerning the longitudinal motion of the
electrons, which will be affected as the electrons slip
along a rapidly varying radiation envelope.
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